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Short communication

Have more confidence in your stability data: Two points to consider
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Abstract

Simple statistical, mathematical, and chemical arguments are presented that will justify performing all stability studies using a different approach
than is currently practiced in the pharmaceutical and IVD industries. The use of multi time point stability studies is in most cases a waste of resources
that could be better spent on endpoint studies at less cost and a significant increase in the quality of the data.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

Stability testing for pharmaceutical and IVD products is one
f the most important and far-reaching process undertaken to
nsure product quality. In some cases, the cost involved in testing
nd analysis of stability data far outweighs the cost of any
ther one function performed in Research and Development.
t is therefore essential that any protocol or general procedure
ritten to establish or verify a stability claim be based on sound

tatistical and mathematical reasoning so the investment is cost
ffective.

The most significant contributor to the cost of testing is
ssay imprecision: as imprecision increases, the number of tests
equired to make sound conclusions also increases. Inter-assay
mprecision can be eliminated with batch testing of back-loaded
amples against a suitable reference (T0) samples. Intra-assay
mprecision cannot be eliminated but can be minimized through
est method selection and randomized testing sequences.
owever, computer simulations of stability data have shown

hat not only is assay precision important, but also the way in
hich the data is collected.

be applied to open vial and accelerated stability with only some
qualifications.

2. Degradation

Although most stability data is analyzed using linear regres-
sion, the rate at which an analyte decays is almost never linear
(referred to as zero order), but follows a curved path during the
process. In almost all cases, the decay is of a higher order, in
simple terms: the rate of decay is proportional to the amount of
analyte present and therefore the absolute rate decreases as the
concentration decreases [1].

For reactions referred to as first order:

[A]t = [A]0e−kt

where [A]t is the concentration of analyte A at time = t; [A]0,
the concentration of analyte A at time = 0; k, the rate of decay.

For higher order reactions (2nd order and above):

[A]t = n−1

√
1

At our facility computer simulations were used to support
he argument that real time stability verification could be
etter assessed using the two-point system. The following
emonstrates why this is true and how the same concepts can

(n − 1)kt + 1/[A]n−1
0

where n, the reaction order.
Whether a chemical reaction follows first or higher order

kinetics, curve fit data can only give clues to the actual
m
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echanism. In fact, a very complex process, such as bacte-
ial growth follows first order type kinetics, but the actual
echanism of the growth involves countless steps of DNA
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replication, transcription into RNA, protein synthesis, and
so on.

It follows that even if the stability data fits well into a higher
order equation, it does not mean that [A] is the only important
constituent. In a multi-constituent solution, a single component’s
decay rate may be influenced by different factors at different
times [2]. Therefore, no matter how precise the test method,
number of replicates tested, or time points studied, the best line
or curve fit to the data is merely a tool to predict real time per-
formance, not a description of the mechanism of decay.

3. Retrospective data review

At our facility a review of R&D archived accelerated stability
data for examples of higher order degradation reactions revealed
a consistent pattern. When higher temperatures are used and the
degradation was allowed to proceed far enough, the best curve
fit tended to be higher order, the higher the temperature. This
was even the case in lyophilized products, where one would
expect minimal interaction between matrix constituents. The
less degradation that occurred during the study meant that all
rate equations would fit equally well. In the Fig. 1 example,
both linear and 2nd order curves fit well for 3-methoxytyramine
stability at 35◦, but at 47◦, the best fit was 2nd order [3].

The forgoing observations could be interpreted in one of two
w
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Fig. 2. PSA 47◦C accelerated stability data.

stability in one experimental pilot had two study temperatures
where the apparent degradation slowed considerably when the
PSA concentration reached 60% of its initial concentration. In
this case there appeared to be two species of PSA present, one
more stable than the other. As shown in Fig. 2, none of the curves
fit the data very well, but the change in rate did not occur until
40% of the PSA was eliminated [4].

4. Linear fits of higher order degradation

The data review also demonstrated that the difference in the
stability estimate only becomes significant when degradation
reaches approximately 20%. In any stability study, whether it be
open vial or accelerated, the practice of using linear regression
to estimate failure rates is therefore appropriate, provided 20%
degradation is not exceeded. In cases where the degradation is
greater, the initial time points, that only include the first 20%
degradation are regressed.

Figs. 3 and 4 illustrate these differences between the linear
and higher order curve fits who’s endpoints (Tfinal) have the same
results of 20% degradation [5].

In Fig. 3, the maximum difference between the 4th order and
linear fits of the data is at the halfway point and is only 2.2% As
time progresses the differences becomes more easily discernable
(Fig. 4).

Although the differences are small in the early stages of
d
d

ays:

. At higher temperatures different chemical reactions come
into play that change the kinetics of degradation.

. If the analyte concentration does not fall to a low enough
value during the study, the difference between a linear regres-
sion fit and curve fits of higher order are so small that they
cannot be measured with the available test methods or sam-
pling protocols.

Although the first interpretation may be valid for some ana-
ytes, the second interpretation can account for almost every set
f data that was reviewed. Therefore, if analyte degradation is
llowed to proceed far enough, all should exhibit higher order
>0 or 1st order) degradation curves.

One interesting exception was uncovered in our review of
xperimental data. Prostate Specific Antigen (PSA) accelerated

Fig. 1. 3-Methoxytyramine accelerated stability.
egradation, why are not the higher order fits applied to the
ata?

Fig. 3. Reaction order and decay curve shape 20% loss at Tfinal.
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Fig. 4. Reaction order and decay curve shape 20% loss at Tfinal.

1. The commonly available software packages (Excel, Lotus,
and Quatropro) do not have the functions to automatically
calculate the rate constants.

2. At analyte degradations of ≤20%, applying a higher order
rate curves makes an assumption about the data that may be
incorrect due to the error. For example: given a method CV of
6% and 3 replicates per time point, one is unlikely to discern
a difference of 5.0%, let alone 2.2%.

The ability to determine the difference between two sample
means is best demonstrated using the formula for the t-test [6].

t = x1 − x2√
se2

1 + se2
2

where t is the two-tailed t distribution value at the 95% confi-
dence level, and the numerator is the difference between the two
sample means.

se2
1 = the squared standard error of the mean of sample 1

se2
2 = the squared standard error of the mean of sample 2

Standard error = s√
n

where s is the standard deviation, or for purposes of illustration,
t

t

x

t

x

T
d
t

c

sample means.

x1 − x2 = 2.776

√
1

3
+ 1

3
= 2.3%

5. The two-point versus six-point system

The preceding arguments should convince you that a linear
fit of the stability data is appropriate if the degradation has not
exceeded 20%. The following presents an equally compelling
argument for reducing the number of time points in a stability
study from six – generally thought of as the minimum number
of time points required for regression – to two time points with
increased replication.

The intent of using intermediate time points in a stability
study is to track the course of decay more closely and there-
fore more precisely determine the point in time at which failure
occurs. Implicit in this approach is the assumption that each
point’s value, and consequently any underlying error, contributes
the same to the overall stability estimate. This is not the case.
In fact, with same number of total tests, the use of a two-point
system can reduce the error in the decay rate estimate by 30%.

5.1. Slope error

For a standard linear regression, the 95% confidence range
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he assay CV.
The resulting t from a above calculation must exceed the

abulated value to be statistically significant.
Rearranging we see that:

1 − x2 = t

√
se2

1 + se2
2

If three replicates from each sample set are compared the
abulated t-value is 2.776. And, if the assay CV = 6% then

1 − x2 = 2.776

√
36

3
+ 36

3
= 13.6

herefore, given an average 6% test method CV, you could not
etect with 95% confidence a difference of ≤13.6% between
wo sets of three replicates.

In fact, the assay precision would have to be 1.0% before you
ould even get close to detecting a 2.2% difference between two
f the slope (in our case decay rate) is given as,

1 = ± t(n − 2, 0.95)s√∑
(xi − x)2

here t(n − 2, 0.95) is the tabulated t-value for n − 2 degrees of
reedom at the 95% confidence level [7].

(xi − x)2

s the sum of squares of the values on the x-axis (in our case time),
nd s is the standard deviation of the residuals (in our case the
verage difference between the measured analyte recovery and
he linear regression estimate for recovery at each time point).

You can see that given the same t value and s, the error in the
lope is solely an inverse function of the square root of the sum
f squares of the x values.

1(error) ∝ 1√∑
(xi − x)2

o, as the average spread of the x values increases, the 95%
onfidence range (error) of the determination of the slope, or
egradation rate, decreases. Therefore, the minimum amount of
rror possible is attained when all the x values are at the two
xtremes (T0 and Tfinal).

To see how much reduction in error can be achieved, imagine
system used to estimate stability, where six equally spaced

ime points are used (n = 6)

et x1 = 0 (in our case T0)

nd x6 = Q (in our case Tfinal)
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Then starting at x1, each successive time point’s value increases
by Q/(n − 1) = 0.2Q.

The mean:

x = 0 + 0.2Q + 0.4Q + 0.6Q + 0.8Q + 1.0Q

6
= 0.5Q

The sum of squares∑
(xi − x)2 = (0Q − 0.5Q)2 + (0.2Q − 0.5Q)2 . . . . . .

+ (1.0Q. − 0.5Q)2 = 0.7Q2

and√∑
(xi − x)2 = 0.84Q

Therefore, the error in the slope estimate with six equally spaced
time points is proportional to 1/0.84 = 1.20.

Now, if the same number of x values are used at only two
points (T0 and Tfinal) then x1 = x2 = x3 = 0, and x4 = x5 = x6 = Q.

And the mean

x = 0 + 0 + 0 + Q + Q + Q

6
= 0.5Q

The sum of squares∑
(xi − x)2 = 3(0 − 0.5Q)2 + 3(1.0Q − 0.5Q)

2 = 1.5Q2

and√
T
t
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Therefore, the results for the middle term of the y-intercept
error calculations is:

six points

[ ∑
x2
i

n
∑

(xi − x)2

]1/2

=
√

2.2

6 × 0.70
= 0.72

two points

√
3.0

6 × 1.5
= 0.58

So, to use two points of 3 replicates each instead of six points of
1 replicate each, there is a modest reduction in the magnitude of
the middle term of the y-intercept error calculation. Given the
same tabulated t-value and standard deviation, the difference is
100(1 − 0.58/0.72) = 19.4%.

6. Standard error of analyte concentrations

In the foregoing demonstration of how the estimates of the
slope and y-intercept can be improved by the use of two points
versus six points, the standard deviation of the residuals (s) were
assumed to be equal. However, using the same total number of
tests, the standard deviation of the residuals is narrower using
two points than when six points are used. In fact, it can be shown
that that the precision using six points of 3 replicates each (18
tests per study condition) can be further improved by testing two
points of 8 replicates each (16 tests per study condition).
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∑
(xi − x)2 = 1.22Q

he error in the slope estimate with two time points is propor-
ional to 1/1.22 = 0.82

Therefore the relative improvement in the precision of
he slope estimate (95% confidence range) using two points
f 3 replicates versus six equally spaced time points
100(1 − (0.82/1.20))] = 31.7%.

.2. Y-Intercept error

Because the stability estimate is expressed as a percentage of
he T0 concentration, the precision of the y-intercept is equally
s important as that for the slope. The 95% confidence range for
he intercept is calculated using the following:

0 = ±t(n − 2, 0.95)

[ ∑
x2
i

n
∑

(xi − x)2

]1/2

s

here t(n − 2,0.95) is the tabulated t-value for n − 2 degrees
f freedom at the 95% confidence level, and s is the standard
eviation of the residuals [7].

As shown in the example of the slope confidence range cal-
ulation, for six points equally spaced,

(xi − x)2 = 0.7Q2

or two points of 3 replicates each the result was 1.5Q2.
It can also be shown that for six points

x2
i = 2.2Q2

nd for two points of 3 replicates each, the result is 3.0Q2.
s is derived from the sum of squares of the residuals (deviation
f the Y values from the estimated regression line) as per the
ollowing equation:

=

√√√√√√√
m∑

j=1

n∑
u=1

(
Yju − ∧

Yj

)2

∑
nju − 2

here the numerator is the sum or squares of the residuals; m,
umber of x groups (time points) from j = 1 to m; n, number of
eplicates per group (replicates per time point) from u = 1 to n.

In the denominator
∑

nju − 2 is the degrees of freedom.
The sum of squares of the residuals can also be expressed as

ollows
m

j=1

n∑
u=1

(
Yju − ∧

Yj

)2

=
m∑

j=1

n∑
u=1

(
Yju − Yj

)2 +
m∑

j=1

( ∧
Yj − Yj

)2

here the first term on the right hand side of the equation is
he sum of squares of each Y replicate minus the mean Y value
ssociated with the time point. The second term on the right
and side of the equation is the sum of squares of the predicted
values of the regression minus the mean Y value associated
ith each time point [7].
Given the same assay precision, the first term will tend to

e smaller when n = 16 (two points of 8 replicates each) than
hen n = 18 (six points of 3 replicates each). This of course is

ompensated for in the denominator in the calculation of s.
The most reduction in the sum of squares of the residuals

ith two time points comes form the second term on the right

and side of the equation. For two points
∧
Yj = Yj and therefore
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Table 1
Calculated parameters from each testing scheme

Parameter Six points Two points
3 replicates 8 replicates

s 6.71 6.41
t(n − 2, 0.95) 2.120 2.145√

n∑
i=1

(xi − x)2 1.45 2.00

b1 = ± t(n−2,0.95)×s√∑
(xi−x)2

slope error ±9.81 ±6.87

m∑
j=1

( ∧
Yj − Yj

)2

= 0. With six points, because of random error

the second term will almost always be ≥0. Therefore, because of
random error, the sum of squares of the residuals for six points
of 3 replicates will almost always be greater than that for two
points of 8 replicates.

7. Overall error reduction

In terms that can be appreciated, how much improvement in
the precision of the stability estimate can be expected?

If one assumes a 6% assay CV, six points of 3 replicates will
result in an average standard error at each time point of 6⁄√3 =
3.464 We should expect that, on average, the sum of squares
about the regression line,
m∑

j=1

( ∧
Yj − Yj

)2

= 6(3.464)2 = 72,

and
m∑

j=1

n∑
u=1

(
Yju − Yj

)2 +
m∑

j=1

( ∧
Yj − Yj

)2

= 18 × 62 + 72 = 720.

and finally

s

√

∑

a

s

T
d
s
s
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(
0
t

a ±10% criteria, the failure estimate for six points/3replicates
would be 10/9.81 = 1.02 of Tfinal and for two points/8 repli-
cates would be 10/6.87 = 1.45 of Tfinal. Therefore, on average
six points of 3 replicates will shorten the shelf life estimate by
1 − (1.02/1.45) = 0.30, or 30%.

8. Conclusions

The logical conclusion from the arguments presented above
is to adopt a new system of stability testing. Moving to a two-
point system when the analyte degradation is less than 20%
will improve the quality of the data and also result in a modest
reduction in reagent cost. For those instances when degradation
exceeds 20%, additional intermediate time point vials, set aside
for such a contingency, can then be tested as a follow-up. New
analytes, for which there is no prior data, would certainly be
evaluated with multiple time points during feasibility.

What cannot be quantified from these improvements in the
stability estimates is the expected decrease in time required to
manage the data, the reduction in stability claim errors, product
non-conformances, and any other consequences resulting from
less reliable data. It may be difficult for some to appreciate these
benefits, but most assuredly, they are substantial.

Because intermediate points do, in some rare cases, provide
additional information, there may be some resistance to this test-
i
h

1

2

3

s
fi
fi
f
f

= 720

16
= 6.71

For two points of 8 replicates each
m

j=1

n∑
u=1

(
Yju − Yj

)2 +
m∑

j=1

( ∧
Yj − Yj

)2

= 16 × 62 + 0 = 576

nd

=
√

576

14
= 6.41

he data in Table 1 shows that if given a true slope of 0 (no degra-
ation), the error of that estimate could result in a calculated
lope of −9.81, or 9.81% decrease during a six point/3 replicate
tudy, and a calculated slope of −6.87, or 6.87% decrease during
two point/8 replicate study.

In our hypothetical examples where Yju = % recovery and xmn
Tfinal) = 1, the analyte being tested would just miss failing by
.19% in the six point/3 replicate study but miss by 3.56% in a
wo point/8 replicate study. If one is estimating shelf life using
ng system. At our facility the exceptions are of course rare and
ave included the following.

. Bacterial contamination (biphasic): Analyte stability track-
ing may follow a linear trend through time, but begin to
change exponentially after bacterial growth attains a certain
level. Because any exponential change in analyte concentra-
tion would exceed 20%, follow-up testing would detect the
issue.

. Incompatibility of testing reagent with a matrix component
(biphasic): In this case, an increase in an analyte was discov-
ered in the results reported from the instrument. The increase
was not due to the stability of the analyte itself, but with inter-
ference of a matrix stabilizer. The increase was actually over
20%, and therefore would have been detected using the pro-
posed system.

. Analyte stability and oxygen levels: Some analytes are par-
ticularly sensitive to oxygen levels—it is improved when
oxygen is low. Under high accelerated stability temperatures,
oxygen can be consumed and significantly decrease, lead-
ing to a decrease in the degradation rate of the analyte, and
an overly optimistic estimate of real time stability. In these
instances, the degradation was over 20% and therefore would
have initiated follow up testing with intermediate time points.

As preparation for this article, a large sample of archived
tability data were retrospectively reviewed. The intent was to
nd exceptional stability patterns in the data that included the
rst 20% of analyte degradation. 102 analytes and 504 stabilities
ound no unusual patterns that could be identified as coming
rom any mechanism other than random assay variation.
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With new drugs, diagnostic controls, and reagents being
added to the list of products undergoing testing, there may be rare
instances in which an unusual pattern is overlooked. The proba-
bility would be virtually eliminated by initial feasibility studies
that include multiple time points. The benefits of increased con-
fidence in the data, which would apply to every stability study
performed using the two-point system, would far outweigh the
risk of missing some rare pattern that takes place during the
first 20% of degradation. In addition, as implicitly shown previ-
ously with the six points/3 replicates per point example, many
more than 3 replicates would be required to discern any pattern
deviating from a straight line.

9. Recommendation

Based on the preceding arguments, the proposal is that the
current stability procedures be revised.

1. For new analytes, the initial feasibility and perhaps the
first development pilot stability studies, can include multiple

intermediate time points. During the later stages of product
development, two time points could be used, with the number
of replicates based on method precision.

2. All other stability testing such as non-conforming product
and product modification validation can be performed using
two time points.

3. Additional, intermediate time point vials would be stressed
and set aside if degradation exceeds 20% at Tfinal.

References

[1] Tinoco Jr., K. Sauer, J.C. Wang, Physical Chemistry: Principles and Appli-
cations in Biological Sciences, first ed., Prentice Hall, 1978.

[2] O. Levenspiel, Chemical Reaction Engineering, second ed., John Wiley
& sons, New York, 1972.

[3] K. De Vore, Personal Experimental Data, 10/7/1998 & 11/2/1998.
[4] K. De Vore, Personal Experimental Data, 12/12/98 & 4/23/98.
[5] K. De Vore, Personal Excel Graphs, 4/14/05.
[6] D.J. Sheskin, Handbook of Parametric and Nonparametric Statistical Pro-

cedures, Chapman and Hall/CRC, 2000.
[7] Draper, Smith, Applied Regression Analysis, third ed., Wiley & Sons,

New York, 1998.


	Have more confidence in your stability data: Two points to consider
	Introduction
	Degradation
	Retrospective data review
	Linear fits of higher order degradation
	The two-point versus six-point system
	Slope error
	Y-Intercept error

	Standard error of analyte concentrations
	Overall error reduction
	Conclusions
	Recommendation
	References


